
N90-22301

Constraint-Based Evaluation

of Sequential Procedures

Matthew R. Barry

Rockwell Space Operations Company

NASA/Johnson Space Center DF63

Houston, TX 77058

mbarry'_nasamail.nasa.gov

19 January 1990

Abstract

Constraining the operation of an agent requires knowledge of the restric-

t.ions to physical and temporal capabilities of that agent., as well as an

inherent understanding of the desires being processed by that. agent.. Usu-

ally a set of constraints are available that must be adhered to in order to

foster safe operations. In the worst case. violation of a constraint may be

cause to terminate operation. If the agent is carrying out a plan. then a

method for predicting the agent's desires, and therefore possible constraint

violations, is required. The conceptualization of constraint-based reasoning

used herein assumes that a system knows how to select a constraint for

application as well as how to apply that constraint ou,'e it is selected.

The purpose of this paper is to discuss the application of constraint-based

reasoning for evaluating certain kinds of plans known as sequential proce-

dures. By decomposing these plans, it is possible to apply context- de-

pendent constraints in production system fashion without incorporating

knowledge of the original planning process.

95

PRECEDING PAGE BLANK NOT FILMED

As an illustration of these ideas, this paper presents a system used in the

Space Shuttle Mission Control Center to evaluate propulsive consumables

management plans.

1 Introduction

We being with the assumption that a planning system has defined a plan

to achieve some (desirable) goal. Normally, the planning agent passes the

plan to an executor agent in order to achieve the goal. If the planner and

the executor are independent, however, there may be situations in which

misinterpretations or invalid instructions occur. These situations may occur

if tile processes assume different operation states, run asynchronously, or

are modified frequently.

Rather than discovering a problem when an improper action is attempted,

the output of the planning agent can be evaluated by an intermediate agent

using a set of constraints governing the operation of the executor agent.. If

the evaluation process uncovers conflicts between the actions specified in a

plan and the actions executable by the intended agent, then execution of

that plan is inhibited until a mediator resolves the conflict. Though these

constraints normally would be considered in an automated planner's line

of reasoning, it might be the case that a plan is generated manually. In

this case the evaluation process acts as an assistant to the human plan

developer.

2 Plans

A plan specifies a means for accomplishing a goal 1. The collection of actions

defining the plan might be unique for each world in which the plan is

applied. Furthermore, the results of applying the plan are dependent upon

1This paper does not investigate the various techniques for constructing plans (see
instead [Steel 1987.Wilkins 1988,Stefik 19811 or the volume edited by Georgeffand Lansky
[Georgeff and Lansky 1987j).

96

the initial state before any of the constituent actions are undertaken. We
cansometimesconceptualize the overall plan as consisting of a set of shorter

plans, with each element of the set possibly operating in a unique context.

We select, a universe of discourse and a set of constraints that specify how

the actions occurring in the changing world are to be applied in the current

state. We define a state as a representation of the current situation in the

world. An action changes tile state of the world. An action block" consists of

a finite sequence of actions. A conditional action consists of a satisfaction

condition and two different actions. If the condition evaluates truc in the

cnrrent state, then one of the two actions is selected. Otherwise, the second

action is selected.

A sequential procedure maps positive integers into the action that is t.o be

performed at the corresponding step of an infinite sequence 'iGenesereth 1987 i.

For example, a sequential procedure P enumerates the order of application

for some actions .4ctior_I and Action J:

P(1) = Actio,_I(:c)

P(2) = Ac_ionJ(.r)

P(3) = .4dionJ(y)

where Action[(,r) denotes the application of the object constant .4ctio_I to

the object ,r, and so on. The state of the world at the end of the sequential

procedure is the result of applying each action in turn beginning with some

initial state for which the plan was generated.

2.1 Assumptions

In order to suitably restrict the kind of plans we can reason about, we inake

the following assumptions:

1. The agent assigned to carry out the actions will assume that the plat:

is executable and satisfies the goal. 2

-'[n some cases there may be multiple agents available to operate in parallel, each
on a different part of the plan iLansky 1987!. Plans for these situations ma?," require

97

2. Tile overall plan is decomposableinto a finite sequenceof smaller
plans.

3. There are no conditional actions.

4. Noneof the action blocksoverlap (tile plan is linear).

3 Constraints

Since we assume that another agent created the plan, we must validate

that agent's work. To do this we check that the plan satisfies tile opera-

tional constraints of the executor agent. The constraints considered ilerein

evaluate both the structure and content of a plan.

3.1 Identification

Three sorts of constraints are defined for suitably-restricted plans: internal,

local, and global. Internal constraints apply to the semantic content of

action or action block objects. These constraints validate the object itself,

rather than its existential purpose.

Local constraints apply to the event currently under consideration as well

as the events occurring just before it. These constraints are independent

of the plan context. They represent physical system limitations, temporal

requirements, and operational management techniques. Usually we can

reason about loc_l constraints as action blocks.

Global constraints apply to all of lhe actions in the plan, and are dependent

upon the evaluation context.

an znteragent constraint evaluation among differing contexts. Pednault :Pednault 1987
describes a technique for reducing some plans intended for multiple agents into a plan
for a single agent. Such a plan may introduce a contextual evaluation based on boundary
condHzo_s.

98

3.2 Application

All of these constraints manifest themselves as production rules in the plan

evaluation system. Each rule represents one constraint. Certain groupings

of rules permit preprocessing and postprocessing activities, which might be

context dependent. All of the contexts encountered during the evaluation

are maintained in the context memory, which essentially is a database of

running sequences, accomplished events, unaccomplished events, etc.

The implementation described below uses standard production rtdes to rep-

resent the constraints. This is convenient due to the nature of most con-

straints. Typically they read "Only do step B after step A is complete." or

"Shutdown if value V of component X exceeds threshold Y." These state-

ments might be captured with production rules like

if not Complete(Step(A))

then Pause(Step(b)).

or

if X.V>Y

then Shutdown.

4 Example

4.1 Background

One of the duties assigned to the Propulsion team in the Mission Control

(!enter (MCC) is to maintain a propellant budgetting plan for all scheduled

activities through the end of the mission. These plans allot propellant to

future maneuvers and attitude maintenance activities. Furthermore. the

team nmst ensure that certain minimum propellant quantities, or "red-

lines", are available at various points in the sequence. These plaas are

constructed initially before launch, but are updated frequently during the

99

course of the mission. Tile plan must always be an accurate representation

of the activities to be carried out by the astronauts. Various constraints

dictate proper implementation of maneuver sequences, redline construction,

mandatory activities, etc. Violation of the redlines is cause to terminate a

mission at)ruptly.

A propellant budget usually consists of a few hundred records itemizing

each of the maneuvers and attitude maintenance periods. This implies

the special case of sequential procedures within the previously defined plan

restrictions. Each record in the plan represents an action to be performed,

and the imrntdiate context applies only to that record. Certain of the

rules apply to the immediate context constraints. Some of these rules are

especially important for verifying the validity of propellant usage references.

That is, they verify" that the propellant cost for a particular action is (1)

non-zero, and (2) the proper budget, item for the global context.

Most of the rules apply to local constraints. The local context consists of

the current record and the few records before and after it in the plan, or

an action bloc/,'. Local constraints limit action durations (e.g. a maneuver

should not last more than 20 minutes), adjacent actions (consecutive OMS

burns are not realistic), and action modes (no primary FR('S thrusters

firing during crew sleep periods).

The evaluation process levies constraints against the entire plan as well

as to each action comprising the plan. Within the every plan there must

appear certain actions, and these actions nmst appear in a certain order,

regardless of how many actions separate them. The global context can be

derived from the name of the plan file or from the first actions appearing

in _he plan (the evaluator assumes these represent the persistent context).

The global context determines which data files are to be accessed, which

constraint limits are to be applied, etc.

4.2 Implementation

The example system was coded in auk running on a UNIX workstation.

The patte,',z .' action constructs processed by awk represent the production

100

rules. Some machinery was built around these constructs to manage the

context memory, to control iteration, and to manage data files. Though

awk runs as an interpreter, the full application evaluates a plan consisting

of several hundred actions in only a few seconds. This level of performance

is quite acceptable considering the utility of the output and the potential

time saved in manually debugging a plan.

The evaluator only displays problem conditions: it does not fix the problem

itself, a A typical problem list may look like the following:

Vernier timeline evaluation:

(1) ERROR: Differing attitudes without maneuver (line 130).

(2) ERROR: Invalid event time (line 151).

(3) WARNING: RCS Hotfire occurs before FCS Checkout.

Processed 260 lines.

Here the integer reference to the sequential plvcedure step number some-

times appears in the problem context description. The first ERROR message

above might have been due to the sequence

P(129) = AttHold(180,0,270)

P(130) =.4ttHold(270.0,270)

whereas a correct implementation of the (virtual) action block might be

P(129) = AtlH old(180, O, 270)

P(130) = 3Ianeut, er(90,O,O)

P(1.31) = A/t H old(270, O, 270)

The example application uses the declarative programming paradigm to

distinct advantage. The constraints involved in plan evaluation typically

are ill-ordered, being applicable whenever the constrained situation arises,

not as a sequential application of other constraints. By applying constraints

aThough it certainly could do so for errors occurring in an unambiguous context.

101

through a production system, the application is able to accommodate ad-

ditional constraints without regard to the computational sequence. Proce-

dural techniques which accomplish the same sort of reasoning are certainly

possible, however the declarative techniques are easier to implement. 4 An

equivalent system might also be coded in CLIPS, LISP or some other readily

available substitute.

5 Conclusions

A sinlple technique for evaluating sequential procedures by applying op-

erational constraints h_s been presented. This technique is useful for de-

termining the feasibility of carrying out a plan that was created without

rigorous knowledge of the constraints imposed by the executor agent.

The evaluation process incorporated into the Space Shuttle consumables

planning programs strives to eliminate the mistakes commonly made when

developing propellant budgets. This process provides real-time quality as-

surance for these critical products. It uncovers subtle problems that might

go unnoticed until further downstream in the development effort by apply-

ing constraints to various aspects of the plan. It provides context sensitive

reasoning capabilities that the (human) plan developers might overlook.

Most importantly, it is flexible to enhancement, easily acconlmodating con-

straint modifications.

References

!Genesereth 1987] Genesereth and Nilsson, Logical Foundations of .4rtifi-

cial b_telligence. Morgan Kaufmann Publishers, Inc., Los Altos, CA,

1987.

[Georgeff and Lansky 1987] Georgeff and Lansky (eds.), Reasoning About

4Moreover, they better represent the actual evaluation process carried out by experts.

102

Actions and Plans: Proceedings of the 1986 Workshop, Morgan Kauf-

mann Publishers, Inc., Los Altos, CA, 1987.

!Lansky 1987] Lansky, "A Representation of Parallel Activity Based on

Events, Structure and Causality," in Reasoning About Actions and

Plans: Proceedings of the 1986 Workshop, Georgeff and Lansky (eds.),

Morgan Kaufmann Publishers, Inc., Los Altos. CA, 1987.

FPednault 1987 ! Pednault, "Formulating Multiagent, Dynamic-World

Problems in the Classical Planning Framework," in Reasor_in9 Aboat

Actions and Plans: Proceedings of the 1986 IVorkshop, Georgeff and

Lansky (eds.), Morgan Kaufmann Publishers, Inc., Los Altos, CA,

1987.

[Steel 1987 i Steel, "Topics in Planning," in Advanced Topics in Artificial

Intelligence, Nossum (ed.), Springer-Verlag, Berlin, 1987.

[Stefik 1981 _ Stefik, "Planning and Meta-Planning (MOLGEN: Part 2),"

Artificial Intelligence 16, 1981.

[Wilkins 1988 Wilkins, Practical Planning: Eztending the Classical AI

Plan_ing Paradigm, Morgan Kaufmann Publishers, Inc., Los Altos,

CA, 1988.

103

